Equibiaxial deformation-induced injury of alveolar epithelial cells in vitro.
نویسندگان
چکیده
Deformation of the alveolar epithelial basement membrane with lung inflation has been implicated in blood-gas barrier breakdown during the development of ventilator-induced lung injury. To determine the vulnerability of alveolar epithelial cells to deformation-induced injury, we developed a cell-stretching device that subjects cells to cyclic, equibiaxial strains. Alveolar epithelial type II cells from primary culture were tested 1 and 5 days after seeding, during which time the cells underwent major morphological and phenotypic changes. Cells were subjected to changes in surface area of 12, 24, 37, and 50%, which corresponded to lung inflation of ∼60, 80, 100, and >100% of total lung capacity. Deformation-induced injury of alveolar epithelial cells, assessed with a fluorescent cell viability assay, increased with deformation magnitude and decreased with time elapsed after seeding. In cells stretched after 1 day in culture, the percentage of dead cells after a single deformation ranged from 0.5 to 72% over the range of deformations used. In cells stretched at 5 days, the percentage of dead cells ranged from 0 to 9% when exposed to identical deformation protocols. These results suggest that morphological and phenotypic changes with time in culture fundamentally change the vulnerability of alveolar epithelial cells to deformation.
منابع مشابه
Sepsis-induced lung injury in rats increases alveolar epithelial vulnerability to stretch.
OBJECTIVE Previous in vitro models have shown that cellular deformation causes dose-dependent injury and death in healthy rat alveolar epithelial cells (AECs). We compared the viability of AECs from septic rats with those from nonseptic rats after 1 hr of cyclic equibiaxial stretch. We hypothesized that sepsis would increase stretch-induced cell death. DESIGN Laboratory investigation. SETTI...
متن کاملDeformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude.
The onset of ventilator-induced lung injury (VILI) is linked to a number of possible mechanisms. To isolate the possible role of alveolar epithelial deformation in the development of VILI, we have developed an in vitro system in which changes in alveolar epithelial cell viability can be measured after exposure to tightly controlled and physiologically relevant deformations. We report here a stu...
متن کاملReproducible uniform equibiaxial stretch of precision-cut lung slices.
Simulating ventilator-induced lung injury (VILI) in the laboratory requires stretching of lung alveolar tissue. Whereas precision-cut lung slices (PCLSs) are widely used for studying paracrine signaling pathways in the lungs, their use in stretch studies is very limited because of the technical challenge of fixing them to a stretchable substrate, stretching them uniformly, or holding them in a ...
متن کاملDeformation-induced lipid trafficking in alveolar epithelial cells.
Mechanical ventilation with a high tidal volume results in lung injury that is characterized by blebbing and breaks both between and through alveolar epithelial cells. We developed an in vitro model to simulate ventilator-induced deformation of the alveolar basement membrane and to investigate, in a direct manner, epithelial cell responses to deforming forces. Taking advantage of the novel fluo...
متن کاملKeratinocyte growth factor reduces alveolar epithelial susceptibility to in vitro mechanical deformation.
Keratinocyte growth factor (KGF) is a potent mitogen that prevents lung epithelial injury in vivo. We hypothesized that KGF treatment reduces ventilator-induced lung injury by increasing the alveolar epithelial tolerance to mechanical strain. We evaluated the effects of in vivo KGF treatment to rats on the response of alveolar type II (ATII) cells to in vitro controlled, uniform deformation. KG...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 275 6 شماره
صفحات -
تاریخ انتشار 1998